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Abstract-Much of the data researchers usually eollect about 
users' privacy and security behavior comes from short-term 
studies and focuses on speellic, narrow activities. We present a 
design arehitecture for the Seeurity Behavior Observatory (SBO), 
a client-server infrastructure designed to eollect a wide array of 
data on user and computer behavior from a panel of hundreds of 
participants over several years. The SBO infrastructure had to be 
carefully designed to fulfill several requirements. First, the SBO 
must scale with the desired length, breadth, and depth of data 
collection. Second, we must take extraordinary care to ensure the 
seeurity and privacy of the collected data, which will inevitably 
include intimate details about our participants' behavior. Third, 
the SBO must serve our research interests, which will inevitably 
change over the eourse of the study, as eollected data is analyzed, 
interpreted, and suggest further lines of inquiry. We describe in 
detail the SBO infrastructure, its secure data eollection methods, 
the benefits of our design and implementation, as well as the 
hurdles and tradeoll's to consider when designing such a data 
eollection system. 

I. INTRODUCTION 

Our understanding of the security and privacy challenges 
users face has grown substantially since some seminal usable 
security papers were first published [1], [2]. Much of the 
empirical data relating to topics such as authentication [3], 
[4], computer warnings [5], phishing [6], [7], identity theft [8], 
has been collected through either in-lab or online controlled 
experiments, or with surveys and interviews. Controlled lab 
and online studies allow researchers to isolate variables to 
observe and measure specific phenomena and effects. Survey 
and interview data have given us a better understanding of 
users' perceptions and perspectives, which are invaluable if 
we are to make security and privacy systems more usable. 
However, lab studies often lack ecological validity, since users 
may behave differently in the real world than in an artificial 
experimental setting [9]. Furthermore, self-reported data may 
not match users' actual behavior [10], [11]. 

Thus, the research community has begun focusing on more 
ecologically-valid data collection. Most published field studies 
to date have concentrated on specific sub-areas in the usable 
security and privacy field (e.g., text passwords [12], [13], ATM 
usage [11], malware infection [14], [15], mobile locking [16], 
social networks [17]). Most of these studies have short-term 
focus and monitor only a specific aspect of user or machine 
behavior. lf we are to discover the ground truth of users' most 
pressing security and privacy challenges, it seems important to 

collect data on users' and their computers' overall naturalistic 
behavior in the wild over an extended period of time. 

In this paper, we present and describe the Security Behavior 
Observatory (SBO) we designed to help researchers collect 
more ecologically-valid data of the widest possible scope over 
several years. The SBO is a client-server infrastructure for 
collecting data from a panel of several hundred household 
computers. Our software will allow us to deploy modular 
and independent sensors to monitor many security and privacy 
aspects of home computer use. Observing comprehensive and 
real-time decision-making of a large panel of users over an 
extended period of time in a real world setting, in itself, is 
invaluable. This information can provide a variety of practical 
and powerful insights into improving security and privacy 
policies and technologies. However, designing and building the 
SBO requires attention to factors less frequently considered in 
shorter-term, more focused studies. The infrastructure must 
be sufficiently scalable, reliable, and robust to collect the 
required size, breadth, and depth of data over the study's 
lengthy duration. In addition, we must carefully consider how 
best to maintain the security and privacy of participants' data, 
given the sheer amount and detail of behavioral data we will 
collect. We also require the flexibility to adjust the types of 
data we collect throughout the study, since research needs will 
invariably change as earlier data analysis leads to further lines 
of inquiry. 

This paper is organized as follows. Section II describes 
how this project contributes to the science of security. Sec­
tion ill introduces the SBO and provides examples of the 
data we intend to begin collecting. Section N elaborates on 
the SBO's architecture from two perspectives. First, we use a 
data flow model (Figure 1) to describe how data is collected 
from participants' client machines and sent to our server, 
and describe the specific benefits of our design decisions. 
Second, we use a deployment model (Figure 2) to describe 
our server configuration and how it securely and reliably 
handles the data encryption, transfer, and storage procedures. 
We briefly describe how participants enroll in our study in 
Section V. Section VI discusses some challenges, trade-offs, 
and limitations to consider when designing and deploying 
such an SBO system. Finally, we describe related work of 
similar data collection endeavors in Section VII and offer some 
concluding remarks in Section VIII. 



II. THE SCIENCE 

Our understanding of computer and user behavior, with 
respect to security and privacy, has largely been based on 
studies of short duration and narrow focus. These studies 
have helped guide research over the past 20 years. How­
ever, a large-scale field study pennits the measurement of 
users' security and privacy challenges and behaviors with 
much greater ecological validity than in the lab, where the 
experimental setting might not reflect users' actual behavior 
in their natural environment [?]. Furthermore, a long-term 
longitudinal study would provide data on the frequencies at 
which users encounter various security and privacy issues. 
These frequencies would represent risk probabilities, which 
are a key element of any risk assessment or risk management 
strategy. Thus, data from such a field study could be used to 
both inform and prioritize future research agendas. 

To fill this need for more ecologically-valid data, we have 
built the Security Behavior Observatory (SBO): a framework 
for collecting data from a large panel of end-users whose 
online behavior will be monitored and analyzed over an 
extended period of time. This project is now possible thanks 
to widespread access to broadband Internet connections with 
reasonable upload speeds. The SBO offers an unprecedented 
window on real-time, real-life security and privacy behavior 
in the wild. Through the SBO, we aim to contribute to the 
evolution of a data-driven science of information security, with 
immediate applications in usability, economics, and secure 
system design. We hope this project will encourage discus­
sions on collecting ecologically-valid data in current research 
practices, and serve as a template for future field studies. 

III. SECURITY BEHAVIOR OBSERVATORY 

The Security Behavior Observatory (SBO) is a client-server 
architecture where participants' client computers are moni­
tored over an extended period of time and upload collected 
user and computer behavior data to our servers. The initial 
launch of the SBO will monitor computers running Wm­
dows Vista, 7, and 8. We currently focus on these operating 
systems because their underlying architectures are almost 
identical (at least for the purposes of data collection), Windows 
has been the most popular operating system for the past 5 
years [18], and desktop usage remains dominant over mobile 
computing [19]. However, the high-level infrastructure design 
and our own implementation (both described throughout this 
paper) can easily be applied to other operating systems (see 
Section N-A 7). Examples of the data we intend to monitor 
from hundreds of client machines over several years, with 
!RB approval and under strict security and privacy safeguards, 
include those described in the following subsections. 

Our architecture is designed to provide data covering as 
much of the security and privacy space as possible. Some 
example research questions we intend to examine include: 

• How up-to-date are operating systems? 
• How long before a clean machine is infected, and how 

does infection actually occur in the wild? 

• What are users' online social network privacy settings? 
Do they ever change, and why? 

o What warning dialog messages do users encounter most 
often, and how do users respond? 

As of this writing, we are performing final tests on most 
the implemented data collection sensors (see Sections III-A 
to III-E) while the others are under development (see Sec­
tions III-F to III-H). We intend to invite participants to com­
plete questionnaires and interviews to elicit their perspectives 
on issues and events we observe throughout the study. We 
are beginning a pilot study on the main client-server SBO 
infrastructure (see Sections III-I to N-A) and user study 
methodology (see Section V). We have purchased the server 
deployment configuration (see Section N-B) and hope to begin 
data collection no later than this summer. 

A. Filesystem 

As currently designed, the SBO tracks changes to the 
filesystem, including the added, modified, or deleted file's size, 
last date modified, pennissions, and other related informa­
tion. 1 This data will help determine, for instance, if malware 
exists on the system and if so, how it affects machines' file 
systems, and whether or not users are likely to have noticed 
its presence. 

B. Installed software and operating system updates 

The SBO maintains a list of installed applications, their 
version numbers, and other related data, to determine what 
privacy or security software (e.g., anti-virus, firewall, ad­
blockers, anonymizers) are installed, and whether they are 
up to date. The SBO also tracks which (and how soon after 
their release) operating system updates and patches have been 
installed. This allows us to measure the duration and severity 
of client machines' vulnerability to security threats. 

C. Processes 

The SBO monitors which processes (e.g., programs, appli­
cations) are running on clients' machines. It captures when 
all processes start and terminate, and can provide additional 
process status information at regular intervals. Primarily, this 
data will assist with the detection of malware. The SBO 
also collects general computer usage statistics that may help 
prioritize future security and privacy work, such as towards 
frequently-used applications. 

D. Security-related events 

The SBO also notes general security-related events, such as 
account-related events (e.g., logins, settings changes, password 
changes), registry modifications, wireless network authenti­
cations, firewall changes, and potential attacks detected by 
the operating system. This will provide valuable insights on 
multiple usable security topics, including the security mea­
sures users' employ on their computers, potentially dangerous 
program behavior, and the types and frequency of attacks that 
occur on home users' machines. 

1 However, we do not collect file or network packet contents since this may 
be too invasive and bandwidth intensive. 



E. Network traffic 

The SBO captures all network packet headers sent and 
received to clients' computers. 1 This data would allow us 
to detect various network traffic types that may be risky (e.g., 
peer-to-peer file transfers, dangerous websites) or suspicious 
(e.g., malware, intrusion attacks). We could thereby verify 
whether risky Internet behavior is correlated with a higher 
probability of an attack or infection. 

F. Internet browsing behavior 

We intend to further monitor users' web browsing behavior 
by collecting data from Microsoft Internet Explorer, Mozilla 
Firefox, and Google Chrome. We intend to capture search 
queries, online social network activity, browsers' and some 
online accounts' privacy and security settings, as well as other 
behavior of particular research interest (e.g., social networks, 
behavioral advertising). One example of possible analyses 
includes: what are users' privacy settings and behaviors on 
online social networks, do said settings adequately preserve 
users privacy, and if not, how could the website be better 
designed to empower users to more easily and accurately 
express their desired privacy settings. Another example of 
planned analysis consists of measuring how often users' actu­
ally make purchases derived from behavioral advertising links. 
This would reveal insights on the actual utility users gain from 
behavioral advertising, with respect to the privacy cost. 

G. Configuration of software and online accounts 

We also intend to track the security and privacy settings of 
users' software (see Section ill-B) and online accounts (e.g., 
Facebook, 1\vitter). This would provide data regarding users' 
security and privacy practices. Should users change any such 
settings during the course of the study, it will be particularly 
interesting to understand users' motivation for initiating the 
change. If this could not be inferred with our data (i.e., if 
we did not detect any particular event preceding the setting 
modifications), we may send participants a survey or request 
an interview to inquire further. 

H. Warnings 

We intend to capture the content of and users' response 
to warning dialogs that request users make a security- or 
privacy-related decision. Past research has shown that users 
frequently do not understand these warnings, let alone know 
how to respond [5], [20]. This data would bring insights into 
the warnings users must cope with most frequently and what 
security and privacy decisions users make when prompted. 

I. Security, Privacy, Usability, and Research Requirements 

To capture such a wide array of data types over a long period 
of time, it is crucial we design and build an infrastructure 
that satisfies several requirements. First, we sbould minimize 
the impact of our data collection software on participants' 
computing and network performance. Thus, since the amount 
of data we can gather and transmit from clients is limited, 
we need the ability to be selective with and vary the types 

Client Server 

Filesystem Filesystem 

Fig. 1. Data flow between our SBO client and server software. 

of data we collect over time. Second, as we collect and 
analyze data, we expect our research questions will evolve 
and require different types of data to be answered. For these 
reasons, our data collection architecture must be flexible 
enough to accommodate our changing needs. Third, unlike 
most experimental software which is typically used for only 
a sbort time for specific targeted purposes and environments, 
any problems caused by our client software could profoundly 
impact participants' computing experience, due to the breadth, 
depth, and duration of our data collection. Thus, our system 
requires a much higher degree of stability and reliability 
than typical experimental software. With these requirements 
in mind, we have designed and implemented the following 
architecture for the SBO. 

IV. ARCHITECTURE 

In this section we describe our design and implementation of 
the SBO architecture from two perspectives. We first illustrate 
how the data flows from initial collection on the client to 
storage on our server. Second, we discuss our deployment of 
servers and each of their roles. For both of these perspectives, 
we highlight the specific benefits of our design. 

A. Data Collection and Flow 

Figure 1 shows a data flow diagram of the client-server 
architecture. Each type of data is collected by a sensor, which 
outputs the data into a common directory. The client com­
munication module periodically checks this directory for data 
files, and compresses, encrypts, and sends them over an SSL­
encrypted channel to the server communication module. This 
architecture provides a number of beneficial design features. 

I) Silent updates: We use Wmdows Installer [21] to pack­
age all the client software components into a single executable. 
Wmdows Installer provides functionality for cleanly installing 
and uninstalling the software, as well as upgrading. When 
the client communication module establishes a connection to 
the server, it first verifies that client software is up to date. 
If the server determines that it is not, the server provides a 
link to the current version's installation executable (hosted on 
our server) to the client. The client then disconnects from the 
server, downloads the current version of the client software, 
and checks the file's integrity with an MD5 hash. If the file 
is intact, the client sbuts itself down after silently running 



the installer executable in the background. Wmdows Installer 
then performs a "major upgrade" whereby the previous version 
is completely uninstalled before installing the new version. 
This clean-install approach avoids potential complex problems 
that can occur with minor upgrades and patches, which can 
result in an unstable software state. Should the update fail for 
some reason, Wmdows Installer will roll back to the previous 
software version, and the data collection can continue until 
the client attempts the update again. The entire update process 
is completely invisible to the user, and does not affect their 
normal computer usage in any way. 

2) Independent sensors: Each type of data of interest (see 
Section III) is collected by a software sensor we have designed 
and implemented. Each sensor is independent of the rest of 
the data collection system. This sensor independence provides 
the following robustness and adaptability benefits. Firstly, 
if a sensor fails, the other sensors will continue to collect 
data, which the client communication module will continue 
to upload to the server. Secondly, if the client communication 
module fails or the server is unavailable, the client sensors 
will continue to collect and store data locally, and upload 
the data once the client communication module has finished 
restarting and/or the server becomes available. Thirdly, as the 
data interests for the study change over time, sensors can be 
silently (see Section IV-Al) and independently added, enabled, 
configured, disabled, or removed by the experimenters at 
any time without impacting any other aspect of the client 
system or our software. Finally, sensors can be implemented 
in whichever language is best for collecting the desired data. 
In Wmdows, this is most often a .NET language (e.g., C#, 
PowerShell), a command-line batch script, or Java. 

3) Least privilege: To ensure clients' security and privacy, 
the principle of least privilege should be followed whenever 
possible. However, some data we seek to collect is likely to 
require administrator access to the client system. Fortunately, 
our architecture's sensors are independent, so higher privileges 
can be given only to sensors that require them. 

4) Minimal footprint: Since the study's primary goal is 
to observe computer users' typical behavior, we must take 
care to avoid experimental effects that may influence this 
behavior. Thus, users should not notice a decrease in computer 
or network performance during the study. We achieve this in 
two ways. First, we take care to avoid intensive processing 
or blocking access to system resources as much as possible. 
Second, we throttle our client software's data upload speed 
to at most 192 kilobits per second (kbps), which is half of 
the slowest upload speed of the least expensive home Internet 
service plan available (excluding dial-up) in our initial area of 
participant recruitment (see Section VI-D). A data transfer rate 
of 192 kbps is equivalent to about 1.44 megabytes per minute, 
which is not much bandwidth for on-going data collection. 
This further enforces a minimal footprint by requiring the 
experimenters to be selective about what types and richness 
of data we collect. Although necessary, prioritizing what data 
to collect can be challenging (see Section VI). 

5) Minimal user interaction: The use of passive observation 
to avoid experimental effects also implies we must minimize 
any user interaction. Our sensors and client communication 
module execute as Windows services [22], which implicitly 
provides this benefit. A Wmdows service is an executable 
program that runs in the background. Similar to Unix daemons, 
services (or any process or thread they spawn) cannot display 
any form of user interface (since Windows Vista). Thus, should 
a program running as a service attempt to display anything to 
the user, it will not be shown. This acts as a safeguard to ensure 
that we do not influence the user's normal computing tasks. 
However, this can be a challenge should the experimenters 
purposefully desire to interact with the user. This may be 
desirable should the experimenters wish to test participants' 
behavior to some stimuli. If future research questions require 
this, the application containing the stimuli would run as a 
standard program, not as a service, and wonld be designed 
so that any disruption to the user is minimized. However, the 
stimuli, and any effects it may have on all data being collected, 
should be carefully considered. 

6) Multiple user accounts: Participants' computers may 
have multiple accounts. The computer's owner may have a 
separate account for guests, or each member of a household 
may have a separate account on a common machine. It is 
crucial that our data collection software run regardless of 
which user account may be logged in. Fortunately, Wmdows 
services can be set to always run when the system starts, 
independently of which user(s) logs in or logs out. Since our 
sensors and client communication module run as services, they 
are assured to run irrespective of which users login. Standard 
(non-service) applications can also be executed at startup, 
regardless of which user logs in, by adding a value to the 
registry [23]. 

7) Portability: Although we are currently targeting only 
Wmdows machines, we may desire the flexibility to collect 
data from other operating systems (OSes). Tu do so, we 
would almost certainly need to write new sensors, since the 
Wmdows underlying architecture is completely different from 
Unix-based operating systems. However, the client and server 
communication modules are written in Java, and thus should 
be easily-portable to any OS. 

B. Deployment 

There are several high-level requirements the SBO must 
meet. It is crucial that the data is securely and efficiently 
collected from participants. The data must must also be as 
securely and reliably stored as possible. Finally, researchers 
must be able to access and work with the data with as little 
inconvenience as possible. Figure 2 illustrates the deployment 
of our server architecture we believe best meets these require­
ments. We describe below each physical server's role, how 
data flows from the clients to the various server machines, 
and the security precautions that are in effect throughout. 

1) Data collection server: The data collection server's role 
is solely to receive data from clients, and periodically send said 
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Fig. 2. Our SBO high-level hardware architecture and data flow. 

data to the data analysis server when requested. The data flow 
from clients to the data collection server proceeds as follows: 

1) Data is continuously generated on client machines (see 
Section IV-A). 

2) At regular intervals, each client establishes an SSL 
connection to the data collection server. 

3) The client and server mutually authenticate each other 
by encrypting random numbers with a shared symmetric 
authentication key [24]. 

4) When the server is ready to receive data, the client 
compresses the data, encrypts the compressed data with 
its symmetric encryption key (which is distinct from the 
authentication key and unknown to the data collection 
server), and sends it to the server. 

5) The server stores the data locally, still encrypted with 
the client's encryption key. 

2) Data analysis server: The purpose of the data analysis 
server is to periodically retrieve the encrypted data from 
the data collection server (and thereafter delete is from the 
data collection server), store all collected data in the data 
storage node(s), and provide access to researchers to perform 
work with the data. To ensure the data's security, it must 
remain solely on the data analysis server and be accessible 
only to project administrators and researchers. Thus, the data 
analysis server can be accessed only through a secure shell 
(SSH) tunnel originating from the specific IP addresses of the 
researchers' and administrators' work machines. To remotely 
access the data analysis server, researchers and administrators 
must first remotely connect to their work machine and, through 
said machine, establish an SSH tunnel into the data analysis 
server. Since the data must never exist anywhere other than 
our servers, all work with the data must be performed through 
this SSH tunnel. 

As previously mentioned, the data analysis server period­
ically requests clients' encrypted data from the data collec­
tion server. This data transmission occurs over a mutually­
authenticated SSL connection [24], and is scheduled to occur 
at a time of day when the data collection server is least 
likely to be busy receiving data from clients (e.g. 4:00 AM). 
The received data is still be encrypted with the correspond­
ing clients' symmetric encryption key (see Section IV-Bl). 

Clearly, the data cannot be analyzed while it is encrypted, 
but we also cannot risk storing it on the server unencrypted. 
Section VI-C discusses how we handle the decryption of the 
data for analysis. 

3) Data node(s): Participants' encrypted data is ulti­
mately stored in two places; in the data storage node(s) and 
data backup node(s). The backup node(s) are located in a 
physically-separate building from the storage nodes. These 
nodes are accessible only through the data analysis server, 
which represents the storage and backup nodes each as a 
network-attached storage (NAS) ZFS volume [25], [26]. Some 
key features of ZFS include snapshots (i.e., simple revision 
control), error detection, protections against data corruption, 
and storage pools, which allow the single logical ZFS volume 
to dynamically expand to include additional physical volumes. 
Thus, as our needs for additional storage grow and we add 
storage nodes, the additional storage space can simply be 
added to the existing logical ZFS volume, rather than being 
represented as a new volume (which would require additional 
researcher effort to manage and organize the data among 
multiple logical volumes). 

An alternative filesystem could be the Hadoop Distributed 
File System (HDFS) [27], [28]. With similar benefits as 
ZFS, HDFS also allows data processing and analysis to be 
parallelized by distributing the data and computations among 
the nodes to more quickly process the data. However, HDFS 
cannot be treated as a traditional logical volume; it must be 
accessed through a special interface (i.e., API). Furthermore, 
programs must be written in a particular way to leverage 
the parallelism benefits of HDFS. Thus, Hadoop may require 
significant investment costs of time and effort. Furthermore, 
Hadoop would be beneficial when there are several data 
storage nodes which can perform computations in parallel. 
However, we currently need only a single storage node with an 
8-core CPU to begin data collection, so the parallelism gains 
are not worth the time and effort investment. As the size of 
our panel and collected data grows to require several storage 
nodes, we will consider using Hadoop or another data storage 
and management teclmology instead of ZFS. 

V. USER STUDY METHODOLOGY 

With the aforementioned infrastructure in place and having 
already obtained approval from our institutional review board 
for these procedures, we can solicit users to participate in our 
panel. Our primary method of finding participants is through 
a recruitment service for which people have asked to be 
notified about experiments. Potential participants will be asked 
a number of pre-screening questions. Participants must be over 
18 and own a Wmdows Vista, 7, or 8 personal computer. We 
send interested persons an e-mail with a link to where they 
can complete the following initial enrollment tasks: 

1) Reading and completing a consent form, which clearly 
informs users that we may monitor all activity on their 
computer and collect any data except for the contents 
of personal files, e-mails sent or received, content of 
documents on Google Docs, and bank card numbers. 



2) Providing the names and e-mail addresses of others who 
also use the computer to be instrumented, so we can 
obtain their consent. 

3) Completing an initial questionnaire 
4) Download and install our data collection client software 

Once these steps are complete, and all the other users of 
the computer have provided their consent, the participant is 
awarded a $30 Amazon.com gift card, since we can now col­
lect data from the participant's machine. Participants thereafter 
receive a $10 gift card for every month our client software 
continues to upload data from their computer. This data trans­
mission occurs silently in the background without requiring 
any action from participants. We also send periodic e-mails 
informing participants that either everything is working fine, 
which of the above enrollment tasks still need to be completed, 
or if we are not receiving data from their machine. If we do 
not receive data from users for 3 months, we may cease their 
participation. 

VI. DISCUSSION 

There are a number of issues warranting careful consid­
eration when collecting data from hundreds of participants' 
personal machines. 

A. Participant IDs 

It is necessary for our server to be able to identify which 
client belongs to which participant for several reasons. Pri­
marily, every client machine must locally store its unique 
encryption and authentication keys to encrypt its data and 
securely communicate with our server (see Section IV-Bl). 
We also need to verify users' continued participation (i.e. 
uploading data), so we can compensate them or remind them 
that they need to keep their computer on and connected to the 
Internet to continue participating. Additionally, we wish to be 
able to perform participant-specific data analyses to evaluate 
whether particular demographics are correlated with certain 
behaviors. We also wish to perform longitudinal analyses 
across specific machines' lifetimes (e.g. time before a malware 
infection). 

The easiest way to identify client machines is to prompt 
the user for their assigned ID when they first install our 
client software. However, because our software runs as a 
Windows service (see Section IV-AS), it cannot display any 
user interface elements, and thus cannot interact with the 
participant. We solved this problem by creating an independent 
program that verifies that the stored participant ID and keys 
are valid, and if they are not, the program prompts the user. 
This program is run as a standard process, independently of 
any of our services, which allows it to interact with users 
if necessary. However, since the program does not run as a 
service, it does not execute within the same workspace or 
with the same privileges as the rest of the client software. 
Thus, we had to resolve various challenges regarding program­
service communication, differing access control privileges, and 
synchronization. 

B. Ethics & participant privacy 

Although true for all user studies, it is critical that an institu­
tional review board (IRB) approve the study's methodologies 
and procedures to ensure participants' are treated ethically 
and their data is kept confidential and secure. We spent 
considerable time iterating over our consent procedures with 
our IRB before their approval. However, many review boards 
do not have the expertise to understand the specific security 
and privacy challenges that may arise. Thus, the burden lies 
on the experimenters to consider carefully which data they 
are willing to collect and hold in trust, and to weigh the 
risk of a compromise with the value of such data to the 
advancement of the community's knowledge. Regarding de­
identification, participants are assigned a random ID, which 
decouples their uploaded data from their provided personal 
information. We are also considering additional anonymization 
strategies and weighing their costs (e.g., loss of data richness, 
client-side computational loads) against possible threat models 
(e.g., client, network, server attacks). 

C. Data Security 

Given the potential sensitivity of the data our infrastructure 
collects and transmits from client machines across the Internet 
and stores on our servers, the data's security and confidentiality 
must be carefully considered and strictly enforced. In our im­
plementation, we employ reliable end-to-end data encryption. 
Every client is assigned a unique encryption key. Client-side 
keys are stored in a permission-secured file on the client. 
To obtain the keyfile, an attacker would need access to the 
client with elevated privileges. The value of a participant's 
keys is unclear in this scenario, since this attacker could install 
malware to collect more sensitive information (e.g., passwords, 
bank account numbers) than we do. 

Before transmitting the data, the client communication 
module compresses and encrypts the data with 128-bit 
AES [29] using Cipher Block Chaining mode [30] and PKCS5 
Padding [31]. This encrypted data is sent to the server through 
an SSL connection and stored, still encrypted with the client's 
unique key. Once the encrypted data is received by the server, 
the client-side copy is deleted. 

Although methods for computing on encrypted data exist 
(e.g., homomorphic encryption), our analyses across multi­
ple sensors' data longitudinally across time are likely to be 
complex enough that they would not be practically feasible 
with such solutions. Instead, one researcher with access to all 
the clients' keys (stored in an isolated and secured MySQL 
database owned by a separate, dedicated, and tightly-secured 
user account) will decrypt and decompress each client's data 
into a TrueCrypt volume, to which all project researchers 
will have the key to analyze the data. Unencrypted data may 
temporarily exist in memory while and after working with it 
However, the data must remain on the data storage nodes, 
which can be accessed only through a secure shell to the 
data analysis server from the specific IP addresses of the 
researchers' own campus machines. No other connections to 
this server are permitted. We feel that this is the best solution 



for offering sufficient data security without overburdening re­
searchers with complex, time-consuming procedures to access 
the data. 

D. Client upload bandwidth 

Given the wide breadth and depth of data we ideally wish 
to collect, the limit on how much data we can realistically 
collect is the clients' upload data rate. We must restrict the 
amount of data we upload from participants' machines to avoid 
a noticeable reduction of their Internet connection bandwidth. 

To calculate this maximum upload rate, we first found the 
lowest data upload rate of Internet plans in our area, which is 
384 kbps (kilobits per second). Tu avoid a noticeable impact 
on participants' network performance, we should use only a 
fraction of this total upload rate. By using only half, the actual 
data rate our software should be allowed to use is 192 kbps, 
or 24 KBps (kilobytes per second). 

To ensure we do not surpass our desired bandwidth usable, 
we throttle clients' data upload speed by interleaving data 
transmission and sleep commands. For example, to achieve 
an upload rate of 24 KBps, the client process could alternate 
between uploading 6 KB and then sleeping for 250 ms until 
all the data is transferred. Sleeping between data transmissions 
should cause the OS to flush the uploaded data stream (i.e., 
actually send the data to our server rather than leave it in the 
client's network buffer in case our process adds more data to 
be sent) and free the network bandwidth and processing cycles 
for other applications until our application resumes. We hope 
to add adaptive throttling functionality to upload either more 
data when the network and computer are idle or less when 
the machine and Internet are in heavy use. However, this risks 
biasing the lower-priority types of data that would be collected 
only for clients with more computing capability and network 
bandwidth, which might be higher-income participants. 

Given the massive amount of data this infrastructure can 
collect about client machine behavior (see Section III), it is 
important to employ techniques to minimize the physical size 
of the data transferred and stored. One such technique involves 
sensors that perform periodic snapshots, which should only 
log differences between the previously-recorded and current 
state, rather than always logging the complete current state. 
This is particularly important for snapshot sensors that gather 
large amounts of data for every snapshot. For example, when 
monitoring the filesystem, we may want to know all files' 
permissions, size, date first created and last modified, and 
potentially an MD5 hash. Such a complete list could easily 
be at least several hundred megabytes in size, which is an 
unreasonable amount of data to regularly transfer and store. 
However, only logging differences between the previous and 
current snapshot would likely be a realistically manageable 
size. 

Another technique we use to reduce our data logs' footprint 
is the Binary JSON (BSON) data format [32]. The BSON data 
format is ideal for our infrastructure's purpose, since BSON 
is specifically designed to minimize spatial overhead in data 
transfers and storage, be easily traversable, and be efficient to 

encode and decode. We use BSON to log data that is either 
hierarchical in nature or may contain variable data elements 
(i.e., where there could be many null values if the data were 
logged in a fiat table structure). 

Even with data minimization techniques such as these, we 
anticipate having to make difficult decisions about which 
types of data to prioritize. However, while performing our 
preliminary data analysis, we may observe phenomena that 
we wish to further explore, but may be unable to because we 
had previously chosen not to enable the relevant sensors. To 
illustrate, suppose we initially choose to focus on malware 
infection. Thus, the minimum data we would need to collect 
appears to be network packet traffic, filesystem changes, and 
the executing processes. However, there are a number of 
scenarios where we would be missing data. For example, the 
network packet sensor would be unable to detect malware 
downloaded through SSL. Without the warning dialog sensor, 
we would not know if the user was ever warned from visiting 
a website, or prompted to download or install the malware. 
Without tracking security-related events, we may be unable 
to detect changes to the Wmdows firewall or other computer 
security settings. Admittedly, it may be possible to make 
some inferences from the sensors we did enable, but our 
understanding of the malware-infection events would certainly 
be incomplete. However, since we cannot possibly collect all 
the data, it is clear that there will be some limitations to the 
analysis we will be able to perform. Still, the choices of which 
data to collect in tandem will need to be made carefully, since 
poor decisions could pose unnecessary additional challenges 
when analyzing the data. 

E. Server specifications & other cost considerations 

There are a number of significant costs involved in conduct­
ing such a long-term data collection study. First and foremost, 
as discussed in Section IV-B, at least four physical server 
machines are required to begin the study; data collection, 
analysis, storage, and backup. Each of these machines have 
different specification requirements which should be carefully 
considered before committing to a purchase. The importance 
we place on each server's components are noted in Table I. Our 
reasoning for these priorities is as follows. The data collection 
server would benefit from several processor cores for receiving 
data from multiple clients at once, but these do not necessarily 
need to be the highest-possible clock speed (hence the medium 
rating). Our server software does not require much memory. 
This server's storage requirements are also relatively little, 
since it needs to retain only data collected over a few days, 
in case the data analysis server is temporarily delayed from 
removing the data (see Section IV-B2). The data analysis 
server itself also requires relatively little storage space for 
the operating system, data transfer, manipulation, and analysis 
applications and scripts. However, the data analysis server 
does require significant memory and processing power for its 
namesake purpose. The data storage nodes require at least a 
reasonably powerful processor and memory for data transfers 
to occur rapidly (and to quickly perform data processing tasks 



TABLE! 
IMPORTANCE OF EACH COMPONENT FOR EACH SERVER (SEE 

SECTION IV-B). 

I Server I Processor I Memory I Storage I 
Data Collection Medium Low Low 
Data .Analysis High High Low 
Data Storage & Backup Medium Medium High 

if HDFS is in use). Of course, the storage nodes must have 
sufficient space to hold all the data to be collected. We use the 
following calculation to estimate our long-term storage needs. 
Assuming each participant uploads approximately 24 KBps 
(kilobytes per second) to our server (see Section VI-D), this 
equates to 377.4 gigabytes (GB) per year per participant. In 
our study's first year, we intend to have 100 users participating 
in our study. Thus, 100 participants each generating 377.4 GB 
per a year results in about 37.74 terabytes (TB) of data. We 
have obtained a minimum hardware configuration that satisfies 
the above requirements, and can be expanded for further data 
collection beyond one year, for around $35,000 (USD). 

In addition to the server configuration costs, there are also 
on-going costs to be budgeted. Primarily, the participants 
require compensation. We are currently offering $30 for com­
pleting the necessary initial tasks to begin participating in the 
study (see Section V), and $10 for every month they continue 
to participate (e.g. we continue to regularly receive data from 
their machine). These costs add up quickly, since each partici­
pant costs $150 per year, so 100 participants cost $15,000 for a 
single year. Furthermore, if we cannot initially attract enough 
participants, we may need to consider increasing this stipend, 
which would further increase costs. Other on-going costs 
that should be considered include the technical administration 
and maintenance of the server hardware as well at least one 
dedicated project leader (and ideally a support team) to build 
and continuously refine the software and sensors, oversee the 
smooth execution of the study, and lead the data management 
(see Section VI-C) and analysis. 

F. Study Limitations 

Despite the wide scope of this infrastructure and study, 
there are some limitations which must be noted. Firstly, we 
are currently targeting only participants using Windows Vista, 
7, or 8. Our focus on modem Microsoft operating systems 
(OS) means that we may not observe phenomena that occur 
on Unix-based OSes. Furthermore, mobile devices and tablets 
are growing in popularity [19]. Users' behavior and risk 
with respect to privacy and security with these devices may 
differ significantly than with traditional desktops or laptops. 
For future work, we could build sensors to collect data on 
Unix-based systems' usage, as well as mobile devices and 
tablets. Fortunately, our client corurnunication module (see 
Section N-A) can run on any system that supports Java (which 
includes most modem operating systems, see Section N-A 7). 

In our user study, we ask users to install our software 
only on their one main Windows computer, because we are 
interested in observing the breadth of behaviors of multiple 

independent machines. However, people often have multiple 
devices through which they may have privacy and security 
challenges, including mobile devices and tablets. Thus, a 
complete in-dePth examination of participants' behavior would 
require instrumenting all of a user's devices. This would 
be particularly challenging, given the multiple OS architec­
tures participants may use. It is also unclear whether or 
not a participant's work machines should be instrumented. 
This would be required for a truly complete understanding 
of users' computing experience and behavior, but it would 
require participants' employers' consent, since data collection 
software on these machines may unintentionally capture the 
employers' intellectual property or other sensitive data. In any 
case, as our user study is currently designed, even though we 
capture a wider breadth of data than previous studies, we still 
risk missing some behaviors that occur on participants' non­
instrumented devices. In future work, we hope to also collect 
data from mobile devices and tablets. We hope to reuse our 
client communication module to collect data from devices that 
support Java (see Section N-A 7). 

As previously mentioned (see Section V), we offer partic­
ipants $30 to complete the initial enrollment, and $10 per 
month of continued participation. This may bias our sample 
towards lower-income and privacy unaware or unconcerned 
participants. We will be able to confirm the former by asking 
participants to self-disclose their income in our enrollment 
questionnaire. However, it is unclear if any affordable level of 
compensation could attract higher-income participants. Addi­
tional compensation may also fail to attract privacy-concerned 
users, since users willing to be monitored are likely to do so 
for relatively small immediate short-term gains [33], [34]. 

VII. RELATED WORK 

Lalonde Levesque et al. [14] performed a 50-subject 4-
month study of the effectiveness of an anti-virus software (AV) 
with respect users' computer behavior. Participants were given 
a Wmdows 7 laptop with Trend Micro's premium home anti­
virus software and various monituring software and scripts pre­
installed. Every month, participants were required to meet with 
the experimenters to complete a survey about their computer 
usage and for the data to be collected from the machines. 
The AV detected 95 distinct threats on 38% of machines 
during the study, the vast majority of which were trojans, 
which is comparable with publicly-available statistics [14]. 
The authors' found 18 threats (e.g., 7 unwanted software, 
9 ad ware, one malware, and another suspected as ma!ware) 
that the AV failed to detect on 20% of machines. Participants 
with a greater computer expertise were more at risk of being 
exposed to threats than less computer-knowledgeable users. 
Furthermore, the authors reported that visiting sports and 
Internet infrastructure sites were more associated with a higher 
rate of infection, while visiting sites with pornographic or 
questionable content was less so. Although their methodology 
bares some resemblance to ours, there are several important 
differences between this and our study. Most obviously, our 
target sample size and study duration will both be several times 



greater (i.e., hundreds of participants over several years). A 
more fundamental difference lies in our respective experimen­
tal models. Their study follows a "clinical trials" experimental 
model from medical research, whereby subjects are given a 
treatment (i.e., AV) and its effects are monitored over time. In 
contrast, our study's primary purpose is to passively observe 
our participants' and their machines' behavior by collecting 
a very wide array of security- and privacy-related data (see 
Section III) without any form of experimental intervention 
whatsoever. 

Van Bruggen et al. [16] instrumented 149 student partici­
pants' Android smartphones with software that collected two 
types of data over two weeks; usage statistics (e.g., data 
usage, text messages, screen lock) and participant responses 
to weekly surveys on various topics. They found that 65% 
of their participants used a phone locking mechanism; 51 % 
used the Android pattern lock and 14% chose a text password 
or PIN. They found no correlations for this choice with 
gender, previous phone type, text message frequency, data 
usage, or personality traits. Upon being surveyed about their 
password sharing behavior, 19% responded that they shared 
the password to their phone, while 63% shared passwords 
for other devices or services. The authors suggested that 
participants may place greater value the security of the mobile 
device over other devices or services. The authors later em­
ployed intervention messages based on incentives, morality, 
and deterrence to encourage users to either adopt a screen 
lock or upgrade to a more secure lock (e.g., from the pattern 
lock to a text password). The interventions did not appear 
result in many conversions. The authors concluded that the 
cost associated with targeting the users and implementing the 
interventions may not be worth the limited results. Our study 
does not currently target smartphones or attempt to modify 
users' normal computing behavior, we may consider testing 
attempts to assist, inform, and persuade users to take security 
precautions, should our data suggest that many users leave 
their computers dangerously vulnerable or otherwise behave 
insecurely. We also hope to expand our study in the future to 
include a broader range of devices, including smartphones and 
tablets. 

Florencio and Herley [12] collected Internet password data 
from over a half-million people over 85 days. This data was 
collected voluntarily from users of the Wmdows Live Toolbar. 
Their component hashed and stored passwords users' entered 
in web pages' password input fields, as well as the related 
URL, the passwords' bit strength, and other data. The authors 
also tracked incidents of password re-use as follows. Every 
time a character was typed into the web browser, their system 
hashed and compared each sequence of the last 7 to 16 typed 
characters to each of the stored password hashes that had 
been collected thus far. If a match was found and the current 
website's URL did not match the stored password hash's URL, 
then a password re-use event was logged. The authors reported 
many interesting findings of users' real-world password use, 
including the following highlights. Users had an average of 25 
different ouline accounts, and typed 8 passwords on an average 

day. Users maintained an average of 6.5 distinct passwords, 
each across 3.9 separate websites. Users predominately chose 
lowercase-only passwords unless required otherwise. Finally, 
based on their study's results, the authors estimated that 
0.4% of Internet users enter passwords on known phishing 
sites every year. Clearly, this study provided the research 
community with great insight into live user behavior, despite 
having only collected data for 3 months. However, unlike 
this study, we currently do not intend to collect data on 
participants' passwords (see Section VI-B), given the risks 
(despite our security precautions) of storing such data for a 
study spanning several years. 

De Luca et al. [11] observed 360 people's interactions with 
automated teller machines (ATMs). A single experimenter 
personally monitored 60 people without their knowledge at 
each of 6 different banks' ATMs at varied times of day. The 
goal of the study was to better understand the context of ATM 
usage without capturing nsers' actual PINs. The data collected 
from each ATM interaction included the location, gender, time 
of day, interaction time, queue length, security measures taken 
by the user, and repeated PIN entry. The authors found that 
users were distracted in 11 % of interactions, and that 65% of 
users made no effort to protect their PINs from observation 
attacks, either out of negligence, inability (e.g. carrying bags), 
or social context (e.g., did not want to imply mistrust in a 
nearby friend or family member). These and other results 
(including from interviews) led the authors to conclude that 
security should not rely on the user whenever possible, should 
be compatible with the social context, and PIN memorability 
is not a problem for most people, but it is severe when it 
occurs, since forgetting led to unsafe practices. The authors 
also shared lessons learned from the field observation study, 
including the utility of conducting pilot studies to test and 
refine the types and methods of data collection, abiding by 
strict codes of conduct to ensure ethical and consistent data 
collection, and importance of field studies in measuring users' 
actual behavior, which can differ from users' stated behavior 
in surveys and interviews. 

VIII. CONCLUSION 

Research to date has brought to light many usable security 
and privacy challenges computer users face, but there remain 
many unknowns, particularly with respect to home computer 
usages. Capturing data on these challenges in the wild as 
they occur naturally is essential if we are to conduct research 
and foster innovations with the greatest impact in improving 
the security and privacy of users and their machines. The 
Security Behavior Observatory (SBO) aims to collect said 
highly ecologically valid data on multiple security and pri­
vacy topics from hundreds of users' home computers over 
several years. This paper has specified the SBO client-server 
architecture, the benefits of our design decisions, and the 
challenges and trade-offs involved in building a system with 
the reliability, robustness, and flexibility required for a study 
of this lengthy duration and grand scope. We hope the data 
collected will yield insights on a wide variety of security and 



privacy challenges, and guide future research efforts towards 
solving the challenges users actually face in the wild. 
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